
Test 3 Numerical Mathematrics 2
January, 2019

Duration: 1.5 hour.

In front of the questions one finds the points. The sum of the points plus 1 gives the
end mark for this test.

1. [2] Given the inner product (f, g) =
∫∞
0 exp(−x)f(x)g(x)dx, give the associated first

three orthogonal polynomials; so upto degree 2. You do not need to normalize the
polynomials.

Solution: The first is simply φ0(x) = 1. Next we set φ1(x) = x−α where α should
be chosen such that (φ0, φ1) = (1, x− α) = 0, hence α = (1, x)/(1, 1). Here,

(x, 1) =

∫ ∞
0

exp(−x)xdx = − exp(−x)x|∞0 +

∫ ∞
0

exp(−x)dx = − exp(−x)x|∞0 = 1

and

(1, 1) =

∫ ∞
0

exp(−x)dx = 1

So α = 1. Next we set φ2(x) = x2 − αφ0(x) − βφ1(x) and require that (φ2, φ0) =
0, (φ2, φ1) = 0. The former gives α = (x2, φ0)/(φ0, φ0) and the latter β =
(x2, φ1)/(φ1, φ1). Now

(x2, φ0) = (x2, 1) =

∫ ∞
0

exp(−x)x2dx = − exp(−x)x2|∞0 + 2

∫ ∞
0

x exp(−x)dx = 2

and

(x2, φ1) = (x2, x− 1) = (x2, x)− (x2, 1) =

∫ ∞
0

exp(−x)x3dx− 2

= − exp(−x)x3|∞0 + 3

∫ ∞
0

x2 exp(−x)dx− 2 = 3 · 2− 2 = 4

So φ2(x) = x2 − 2− 4(x− 1) = x2 − 4x+ 2

2. Suppose that f(x) =
∑∞

i=0 aiφi(x), where φi, i = 0, · · · , are orthogonal polynomials in
some innerproduct.

(a) [0.7] Show that ai = (f, φi)/(φi, φi).

Solution: Just take the innerproduct of the above with φk. Then we obtain
(f, φk) =

∑∞
i=0 ai(φi, φk) =

∑∞
i=0 aiδik(φk, φk) = ak(φk, φk). Another route

follows from minimizing ||f(x) −
∑∞

i=0 aiφi(x)|| over the coefficients ai where
the norm is the one associated to the inner product.

(b) [1] Show that
∑∞

i=0 a
2
i (φi, φi) = (f, f). What is the name of this expression and

what does this expression mean?



Solution: We start from the right and substite the expansion given. This
yields

(f, f) = (
∞∑
i=0

aiφi(x),
∞∑
j=0

ajφj(x))

=

∞∑
i=0

∞∑
j=0

aiaj(φi, φj)

=

∞∑
i=0

∞∑
j=0

aiajδij(φi, φi)

=
∞∑
i=0

a2i (φi, φi)

This is the Parseval relation. It means that the 2-norm of f is equal to a
weighted infinite vector norm over its coefficients.

(c) [0.5] Assume f(x) = pn(x) where pn is a polynomial of degree n. Show that ai = 0
for i > n.

Solution: Since any polynomial of degree n can be expressed as
∑n

i=0 ciφi(x)
by just writing out all the polynomials and equating the coefficients of xk for
k = 0, · · · , n) we see that (f, φi) = 0 for i > n and hence ai = 0, for i > n.

(d) [0.3] What will be the error if we approximate f(x) = pn(x) by the first n − 1
terms of the expansion in orthogonal polynomials?

Solution: The error will be anφn(x).

(e) [0.5] Suppose we have a finite interval. For which orthogonal polynomials the
approximation in the previous part gives us the minimax approximation, i.e., the
best polynomial approximation. Explain also why.

Solution: The minimax approximation is found if the error satisfies the equios-
cillation theorem, i.e., all the n + 1 extrema should be equally big and alter-
nating in sign. In this case we obtain this if we use Chebyshev polynomials
shifted to the considered interval.

(f) [0.5] What do parts (c),(d) and (e) learn us about the best choice to find least
squares approximations to the minimax approximation?

Solution: If we have a smooth function in which the coefficients ai decrease
rapidly then using Chebyshev orthogonal polynomials will give us an error
which almost satisfies the equioscillation theorem and hence we are close to
the minimax solution. For this reason Chebyshev polynomials are the most
appropriate choice in general in least squares approximation.

3. [1.5] The error for Gauss-Lobatto interpolation on [-1,1] behaves as ||f − ΠGL
n,wf ||w <



Cn−s||f ||s,w for some C > 0 where w(x) = 1/
√

1− x2. Explain the symbols in this
expression and what the expression means.

Solution: ΠGL
n,wf with the weight function w(x) of the Chebyshev polynomials

means an interpolation using the zeroes of Tn(x) + aTn−1(x) + bTn−2(x) where a
and b are chosen such that the endpoints -1 and 1 of the interval are also zeroes. The
norm || · ||w is the norm induced by the innerproduct (f, g)w =

∫ 1
−1w(x)f(x)g(x)dx.

And ||f ||2s,w ≡
∑s

i=0 ||f (i)||2w.
The expression says that when the derivatives of f are bounded in the w-norm
up to order s then the convergence of the interpolation behaves like 1/ns. So the
more derivatives are bounded the faster the convergence will be. This means that
for functions for which the norm is arbitrary many times differentiable and at the
same time the sum in the definition of ||f ||s,w is bounded for s to infinity we will
see convergence going faster than any expression 1/ns, i.e., we find exponential
convergence.

4. Consider the ODE dy/dt = f(t, y(t)) for t > t0 with y(t0) = y0.

(a) [0.5] Write this ODE in integral form asuming a constant step size and derive from
that the expression one gets if we integrate on a grid from tn to tn + h, where h is
the mesh size.

Solution: Just integrate left and right over time from c to t and we get

y(t)− y(c) =

∫ t

c
f(s, y(s))ds

Now we just substitute c = tn and t = tn + h and we obtain

y(tn + h)− y(tn) =

∫ tn+h

tn

f(t, y(t))dt

(b) [1] Suppose we have an integral rule I(f) ≡
∫ 1
−1 f(x)dx ≈ In(f) with an error given

by f (m)(η)
∫ 1
−1 Πn

i=0(x−xi)2dx for an η on [-1,1] and m some positive integer. Show

that this error leads to O(h2n+3) behavior, if we transform the domain [-1,1] to
the domain [tn, tn + h].

Solution: Using the transformation t = tn+h(x+1)/2, we obtain that x−xi =
2(t− t(xi))/h and consequently∫ 1

−1
Πn

i=0(x− xi)2dx = (2/h)2(n+1)+1

∫ tn+h

tn

Πn
i=0(t− ti)2dt

where we also used that dx will become 2/hdt by the same transformation. So
rewriting we have that∫ tn+h

tn

Πn
i=0(t− ti)2dt = (h/2)2n+3

∫ 1

−1
Πn

i=0(x− xi)2dx



The latter integral will give us just some number independent of h. So indeed
we will have an O(h2n+3) error in the integrals approximation.

(c) [0.5] Suppose we apply the integral rule to the integral form of the ODE. What is
the order of the local truncation error of the resulting difference scheme assuming
we can get the needed values of y(ti) with ti on [tn, tn + h] sufficiently accurate?

Solution: Suppose the integral rule shifted to the interval [tn, tn +h] is În(f).
Then, the local truncation error is defined by

τn(h) =
y(tn + h)− y(tn)− În(f)

h

=
y(tn + h)− y(tn)−

∫ tn+h
tn

f(t, y(t))dt−O(h2n+3)

h
= O(h2n+2)

where in the last step we have used that y is an exact solution of the ODE and
consequently of its integral form.


